Computing jumping numbers in higher dimensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Euclidean bottleneck matchings in higher dimensions

We extend the planar results of Chang et al. [5] to higher dimensions, and show that given a set A of 2n points in d-space it is possible to compute a Euclidean bottleneck matching of A in roughly O(n 1:5 ) time, for d 6, and in subquadratic time, for any constant d > 6. If the underlying norm is L 1 , then it is possible to compute a bottleneck matching of A in O(n 1:5 log 0:5 n) time, for any...

متن کامل

Generalizing Narayana and Schröder Numbers to Higher Dimensions

Let C(d, n) denote the set of d-dimensional lattice paths using the steps X1 := (1, 0, . . . , 0), X2 := (0, 1, . . . , 0), . . . , Xd := (0, 0, . . . , 1), running from (0, 0, . . . , 0) to (n, n, . . . , n), and lying in {(x1, x2, . . . , xd) : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xd}. On any path P := p1p2 . . . pdn ∈ C(d, n), define the statistics asc(P ) :=|{i : pipi+1 = XjX`, j < `}| and des(P ) :=|{i :...

متن کامل

Generating non-jumping numbers recursively

Let r 2 be an integer. A real number ∈ [0, 1) is a jump for r if there is a constant c > 0 such that for any > 0 and any integer m wherem r , there exists an integer n0 such that any r-uniform graph with n>n0 vertices and density + contains a subgraph with m vertices and density + c. It follows from a fundamental theorem of Erdős and Stone that every ∈ [0, 1) is a jump for r = 2. Erdős asked wh...

متن کامل

Jumping Numbers of Hyperplane Arrangements

M. Saito [S] proved that the jumping numbers of a hyperplane arrangement depend only on the combinatorics of the arrangement. However, a formula in terms of the combinatorial data was still missing. In this note, we give a formula and a different proof of the fact that the jumping numbers of a hyperplane arrangement depend only on the combinatorics. We also give a combinatorial formula for part...

متن کامل

A note on non-jumping numbers

Let r ≥ 2 be an integer. A real number α ∈ [0, 1) is a jump for r if there exists c > 0 such that for any ǫ > 0 and any integer m, m ≥ r, there exists an integer n0 such that any r-uniform graph with n > n0 vertices and density ≥ α + ǫ contains a subgraph with m vertices and density ≥ α+ c. It follows from a theorem of Erdős and Stone that every α ∈ [0, 1) is a jump for r = 2. Erdős asked wheth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: manuscripta mathematica

سال: 2018

ISSN: 0025-2611,1432-1785

DOI: 10.1007/s00229-018-1069-1